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Reaction-diffusion systems show a fast and rather complex response on patterns 
produced by external space- and/or time-dependent perturbations. For example, 
one-component autocatalytic reactions rapidly find the loci where the given 
space-dependent reaction rates have relatively high values by following a kind of 
Darwinian strategy (combining self-reproduction and diffusion). It is shown that 
a simulation of this strategy in combination with annealing (decreasing the dif- 
fusion rates in time) may be used as an alternative to thermodynamic annealing 
strategies. Many-component reactions, such as the light-sensitive 
Belousov Zhabotinsky reaction, show a more complex response to patterns 
impressed by illumination, for example. The response behavior and possible 
applications to dynamic information processing are discussed. 

KEY WORDS: Boltzmann strategies; Darwin strategies; annealing; eigen- 
value problems; double dynamics; chemical waves; information compression on 
attractors. 

1. I N T R O D U C T I O N  

The wel l -known Tur ing  machine  is the s t a n d a r d  representa t ive  of a sym- 
bol ical ly  intel l igent  machine  which reflects some basic  pr inciples  of m o d e r n  
p r o g r a m m a b l e  c o m p u t e r  devices. I t  is less k n o w n  that  Tur ing  devoted  the 
last years  of his life to the s tudy of  react ion-dif fus ion systems (RDS) ,  which 
he cons idered  as basic  to the unde r s t and ing  of l iving systems./11 Reac t ion-  
diffusion processes p lay  an i m p o r t a n t  role in the funct ion of the nervous  
system. F o r  example ,  recent  evidence suggests tha t  the reac t ion  and  dif- 
fusion of cyclic nucleot ides  have an i m p o r t a n t  funct ion in the in tercel lu lar  
process ing of neura l  signals. (21 If the unique in format ion  process ing 
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capabilities of reaction-diffusion processes could be adapted to computers, 
then evolvable, more efficient systems for such tasks as pattern recognition 
and process control are in principle possible. (3) In a recent paper, Kirby 
and Conrad (4) proposed calling the information-processing RDS "Turing's 
Other Machine." There are now initial experimental approaches to the 
study of the information processing in artificial RDS. ~5'61 

This paper is devoted to a theoretical discussion of the manipulation 
and processing of patterns by RDS. First we want to study the capabilities 
of RDS for solving minimum-finding problems for very complex patterns 
("frustrated" potential functions having many minima and maxima). In our 
approach the optimization of a given cost function (potential) is modeled 
by the exploration of a reaction rate pattern through the simulation of a 
special RDS (Fisher-Eigen system), which efficiently finds extrema (Sec- 
tion 2). 

In Section 3 we consider a real RDS (Kuhnert's modification of the 
Belousov-Zhabotinsky reaction) as a special dynamic network system 
which responds to specific inputs, e.g., pattern-creating light signals, with a 
complex dynamical output. Throughout the paper we will apply recent 
concepts, such as information compression on attractors, (1~ as well as 
the idea of double dynamics. 13'4) 

2. F ISHER-E IGEN PROCESSES T H A T  SOLVE O P T I M I Z A T I O N  
P R O B L E M S  

Recent research in tasks of combinatorial optimization, e.g., the travel- 
ing salesman problem and the wiring problem for a microelectronic chip, 
aims at developing efficient strategies for finding "good minima" of a scalar 
function (cost function) U(q) of very many independent variables 
q=(qx,q2,.--,qa)- One of the best strategies available so far is the 
Boltzmann strategy (thermodynamic strategy) in combination with 
annealing. (s'9) We can note that a thermodynamic annealing strategy is new 
only in respect to applications in science; in nature it has been applied since 
the hot big bang about 15-20 billion years ago. The basic elements of this 
strategy are: 

1. Motion along gradients to reach steepest descent. 

2. Stochastic thermal motion to avoid locking in local minima. 

3. Decrease of the temperature to increase the precision of the search. 

Following this "strategy" of nature, the galaxies, stars, and planets were 
formed. One may ask whether the other basic strategy in our universe, the 
Darwinian strategy, which was developed by nature only 3 4 billion of 
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years ago, may be in some respect even more advantageous. The basic 
elements of a Darwinian strategy are: 

1. Self-reproduction of good species that show maximal fitness. 

2. Mutation processes that change the phenotypic properties of the 
species. 

3. Increase of the precision of self-reproduction in time. 

The simplest model of a Darwinian process (a kind of "Fisher Eigen 
machine") is an RDS corresponding to a continuous Fisher Eigen 
equation with slowly time-dependent diffusion (mutation) rates. In the 
following we will use dimensionless units for all quantities and normalize 
the unit length to be one. Then we have (121 

~,x(q, t )=  [ ( g } -  g(q)] x(q, t)+ D(t) Ax(q, t) (1) 

In chemical terms this is a special RDS of one-component autocatalytic 
type. Here x(q, t) is the density over a d-dimensional state space (the 
physical space for chemical reactions or the search space for optimization 
problems). This space is spanned by the vectors 

q = ( q l ,  q2,'", qd) 

The self-reproduction rate (velocity of autocatalysis) is assumed to be 
proportional to the local value of a given space-dependent function U(q) 
minus its "social average" 

(2) 

Equation (1) is similar to a Schr6dinger equation with imaginary time. 
Therefore, the process corresponding to Eq. (1) is related to the eigenvalue 
problem of Schr6dinger type: 

DAtpk(q) + [ek-  U(q)] ~Pk(q)= 0 (3) 

Here D is considered to be a constant or a function of time that varies very 
slowly in comparison to the characteristic relaxation processes of Eq. (t), 
which are in fact given by the reciprocal eigenvalues of Eq. (3). The com- 
plete solution of Eq. (1) in terms of the eigenfunctions and eigenvalues of 
Eq. (3) reads 

"~  ek exp(-ekt)  ~Pk(q) 
x(q, t) = N (4) 

~ ct exp(-sir)  
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where we have used the artificial normalization 

and 

f dq 0k(q) = 1 

N-- f ot, f ot 

(5) 

(6) 

Let us assume now that the potential function U(q) shows a great 
number of extrema comparable with the multimodality of a spin glass. The 
idea is that finding a good solution of a complex problem is always a com- 
promise between several requirements and constraints--it  is a so-called 
"frustrated problem." For  such potentials classical minimum-finding prin- 
ciples may fail. (14) More refined stochastic methods, however, will still 
work. Corresponding to the complex structure of the potential, let us 
assume that the Schr6dinger problem (3) has a mixed spectrum with many 
discrete states which are localized in the vicinity of the potential minima, 
among them the ground state (eo, Oo(q)). Further, there is a continuous 
part of the spectrum corresponding to extended states. In the process of 
time evolution given by Eq. (4) the contributions of the "highest" states are 
damped out first, and as time proceeds, the density is concentrated more 
and more around the localized eigenfunctions. The process of search 
corresponds to a falling down the spectrum of eigenvalues. First the system 
leaves the extended states and concentrates around the minima. Finally the 
process converges to the ground state 

x(q, t) --* Ut~o(q) (7) 

In this way we have shown mathematically that a Darwinian strategy 
modeled by a Fisher-Eigen process indeed shows the property of searching 
for local minima. By using other language, we may say that the localized 
eigenfunctions of the potential represent the local attractors of the reaction- 
diffusion process. The reactions alone would correspond to the division of 
the search space into many attractor basins around the local minima. The 
diffusion makes it possible to cross the separatrices between the attractors. 
For a parabolic minimum with dispersion D2 = (~q)2 ,  the wave function 
has dispersion D~ = 26q x/-D. The fast dynamics of the search process (reac- 
tion-diffusion process) may be coupled with a slow dynamics connected 
with a time change in the diffusion rates. The requirement that at any time 
the wave function is overlapping with regions that are not yet occupied 
leads, e.g., to an annealing strategy 

a q ( t )  ~ [aq(t)] ~ 



Reaction Diffusion Systems 895 

Thus we have 
D ( t ) ~ ( 6 q ( t ) )  2 (8) 

Let us now discuss a special discrete realization of a Fisher Eigen 
process which can be simulated on a computer. (13) We divide the search 
space by a fine mesh into s cells, which are numbered by i = 1, 2 ..... s, and 
study an ensemble of systems consisting of N representatives with 
s ~ N ~ 1. We further assume that the local value of the potential is Ui and 
the occupation number at time t is N~(t). If the search state is discrete, 
corresponding, e.g., to a spin lattice, the index i would denote the global 
state of the lattice with the energy U~. 

For  simplicity we normalize the potential in such a way that all Ui are 
negative. The initial distribution on the cells is assumed to be 

N,(0), N2(0),... , Ns(0) 

Now we introduce a stochastic process consisting of two elementary trans- 
ition processes: 

1. Self-reproduction described by a transition probability 

W(NI  ..... U~+ 1 ..... N j -  1 ..... Usl N1 ..... X~,..., N#,..., N~) = ( -  U~) N~NHN (9) 

2. Mutation described by a transition probability 

W'(N1 ..... N k +  l ..... N t -  1 ..... N~.tN1 ..... Nk ..... N,,..., N s ) = D ~ N  / (10) 

This process is allowed only if k and l are neighbors. In this case D~I = D. 
An extension of this model beyond pure diffusion would include more com- 
plicated distance-dependent matrix elements Dkt. Biological species suc- 
cessfully apply a strategy with frequent mutations to near phenotypic 
states, but from time to time big steps (macromutations) occur. In analogy 
to this, our matrix D~t could include a long-range tail modeling nonfre- 
quent macromutations. The choice of transition probabilities given by 
Eqs. (9 and 10) is not unique. Another possibility is to allow only directed 
transitions: 

1. The transition probability 

W = I - { ( o U j - U i ) N i N j / N  2 if if 

2. The transition probability 

1 if 
W ' = D  e x p ( ( U t -  Uk)/T) if 

Uj~> U~ 
( l l )  

Uj< U~ 

U~ ~ U/ 
(12) 

Uk > U~ 



896 Ebeling 

It was shown elsewhere (~3) that the stochastic processes described above 
correspond in average to a discrete cell version of the Fisher Eigen 
equations. Simulations for a biologically motivated variant of the model 
(9)-(10) have shown that the stochastic process leads indeed to an 
amplification of all species below the social average of Ui and a continuous 
decrease of the average in time. (13~ Applications to technically oriented 
optimization problems have not yet been carried out. However, in earlier 
papers a qualitative analysis of the efficiency of Darwinian strategies in 
comparison with thermodynamic strategies was given/7'121 by studying the 
mean first passage times for these processes. An estimate shows that a 
Darwinian process needs on average the time 

~o ~-g-g (13) 

to leave a minimum and reach another one in a distance c~q that is deeper 
by 6U than the first one. Here A U is the height of the threshold. Compar- 
ing this with the transition time for thermodynamic processes ~14~ 

rB~exp(AU/D) (14) 

we observe great differences between the transitional behavior of both 
strategies. Therefore, in general it will depend on the structure of the poten- 
tial what search strategy is the better one. The qualitative analysis suggests 
that in the case that no knowledge about the structure of U(q) is available, 
it will be advantageous to apply the Boltzmann strategy combined with 
annealing. This strategy seems to be more universal; it will always work. 
However, thermodynamic processes have the tendency to be locked in 
relative minima that are surrounded by high thresholds. Since the trans- 
ition time depends exponentially on the height of the threshold AU, one 
may need very large times to find minima that are separated from the 
starting position by many high barriers. This is the weak point of the 
Boltzmann strategy. On the other hand, Darwinian processes are able to 
cross high barriers by tunneling if the next minimum is close. However, the 
Darwinian strategy is not universal; it works only under appropriate con- 
ditions, e.g., the existence of localized states is a necessary condition. If the 
potential does not possess localized states, e.g., if the minima are too flat, a 
Darwinian search of the type described above will never concentrate the 
density around minima. Therefore, in some cases mixed strategies might be 
advantageous; this is what we observe in nature. Most natural processes 
follow Boltzmann strategies (in the widest sense); more refined solutions, 
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however, require Darwin strategies. A simple mathematical expression for a 
mixed strategy in this sense is 

O,x(q, t)=e(t)[ ( U ) -  U(q)] x(q, t) 

+fl(t)V.[x(q,t)VU(q)]+D(t)Ax(q,t)  (15) 

with 

Here as in our earlier considerations the functions D(t), ~(t), and flU) 
should follow a slow dynamics that aims to optimize the search process as 
a whole. It is known that an appropriate slow dynamics may imply 
Pavlovian behavior and learning.(411) 

3. P A T T E R N  P R O C E S S I N G  BY REAL RDS 

So far we have considered a special one-component artificial RDS, 
which may be used for the simulation of search processes in high-dimen- 
sional abstract search spaces. Let us consider now real RDS, e.g., the 
Belousov Zhabotinsky reaction (BZR) in the physical space, d = 2 or d =  3. 
We assume the kinetic equation 

O,x(r, t ) =  W{x(r, t); 2(r, t)} +V"  [D(r, t)Vx(r, t)] (16) 

where x is considered to be an s-dimensional vector giving the set of con- 
centrations, 2(r, t) is an m-dimensional vector of reaction parameters, r is 
the d-dimensional space vector, and D(r, t) is the diffusion tensor. Further, 
let us assume that the parameters are controllable and might be 
manipulated from outside with respect to their space and time dependence. 
We note that Eq. (1) is a special case of Eq. (16) with a special quasilinear 
form of the reaction function W, a scalar x, and a given space-dependent 
reaction parameter U(q). In the abstract space we considered in Section 2, 
the parameter function was given by a certain algorithm (e.g., the total 
length of wires connecting the elements on a chip). In real space the 
manipulation of reaction parameters may be performed in many ways, the 
most elegant of which is probably the optical way. (6'15) The special case 
that x is a scalar, W a bistable function, and 2(r, t) a stochastic vector has 
been treated elsewhere/~6,17) Let us consider here as another example the 
BZR with light-sensitive Ru catalyst. ~6) The Oregonator model of the BZR 
is given by the schema (~8) 

( 1 ) A + X 2 ~ X ~ ,  (2) A + X 2 ~  P, (3) B +XI  -~ 2X~ 

(4) 2X1 --* Q, (5) x3 ~ f X 2  (f~<l)  
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Kuhnert 's modification of the BZR uses the ions Ru 2 and Ru 3 as the 
catalysts. Here Ru 2 acts as the oxidizer and Ru 3 as the reducer. By 
absorption of light a dramatic change of the redox properties of the R u  2 

ions takes place, since the excited modification *Ru 2 is a strong reducing 
agent. As proposed by Kuhnert  eta/., (19) we model this by an additional 
source of B r -  ions: (5) C -~ X2. 

The meaning of the three independent variables is the following: 

xl = [HBrO2],  x2=  [ B r - ] ,  x3 = [Ru 3] 

By using an appropriate choice of units we get the three equations 

~t(r, t ) =  x l ( l - X l ) - x l x z + , ~ l X 2 + O l A X  1 

O,xz(r, t) = 22(25 - 21x2 + 24x3 - xlx2) + D2Ax2 (17) 

Otx3(r, t) =/~3(Xl  --  X3) + D3zIx 3 

Here the parameters are defined as follows: 

}~1 = 2 kl k4A 
k3k2B' 

kx k5 
"42 -- 2k 4 , 23=k3 B 

k4 CkZk6 
24 = 2f ~ B ,  25 - 

2klk3k4AB 

For 25=0 ,  Eqs. (17) reduce to the classical Oregonator model, which 
shows uniform oscillations as well as traveling waves/~8) In the other case 
of fixing 23 = 2 4 = 0 ,  Eqs. (17) reduce to the model investigated by Kuhnert  
et al., (19) which shows uniform bistability as well as front waves (trigger 
waves). Therefore, the model (17) combines both properties and may be 
used to describe at least qualitatively the complicated pattern formation 
observed experimentally/6) 

In order to analyze the possible behavior, let us study the charac- 
teristic equation for the stationary states of the x I coordinate: 

~3 __ (1 - 24 -- 21) 42 + (25 - 21 ")~4 - "~1 ) ~ - 21 '~5 = 0 (18) 

For  simplicity we restrict consideration in the following to the case 21 ~ 1 
and 24 < 1. Then there exist three regimes, depending on the value of the 
light-sensitive bifurcation parameter 25: 

1. Strong light intensity, 

1 
25 > 2c1 " ~  (1 - 2 4 )  2 q- .,~124 
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In this regime we find only one globally stable stationary state with 

41=x~176 (1 --Jl4 -~,1 ), X2~ ~ ")~4 
This corresponds to the reduced phase of the reaction, which in the 
experiments is recognized by its red color. For nonuniform initial con- 
ditions all parts of the space that are covered by the strong light beam will 
move to this state and we may observe a traveling wave, which finally 
covers the whole illuminated area with dark red color. 

2. Weak light intensity, 

,~s < 2c2 ~ 421 

In this regime the system shows only one stationary state, which is located 
at 

41=xO=xO','~,~l; xO~(~Sq-;i;4)/2)ol 

This stationary state may be stable or unstable, depending on the values of 
the parameters 21, 22, "~3, 24. Uniform oscillations as well as traveling 
waves may be observed. In this regime the processes will be very similar to 
those in unperturbed Oregonator systems with 25 = 0. 

3. Medium light intensity, 

In this intermediate regime the system shows three stationary states, 
41 < ~2< 43; two of them (41,43) are stable and one (42) is unstable. The 
system may develope front waves, which in a rough approximation for 
D 1 ~ D 2 ~ 0 3 may be described by (17) 

x 1 ( z , t ) = 4 1 + ( 4 3 - 4 2 ) ( 1 + e x p { f l [ n . r - v o t + ( d - 1 ) D 1 K t ] } )  i (19) 

[ DI ] 1 / 2 2 ( 4 1 7  ")~1) ~3--41 V0= (~3 + 41-- 242); /~ = [2D1(42 + X1)]l/2 

Here Vo is the planar velocity, d the dimension, K the curvature, and n the 
normal vector. Depending on the value of )~5, which strongly influences the 
positions of the three roots, the front can move forward or backward. The 
front always moves into the direction of the globally less stable phase, 
increasing in this way the volume (area) of the more stable phase. In the 
approximation given above the state 43 is more stable than 41 if 
4 3 - - 4 2 > 4 2 - - 4 1  . A typical system of isoclines for the bistable regime is 
shown in Fig. 1. 
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Fig. 1. Isoclines of the light-sensitive Ru-catalyzed Belousov Zhabot insky reaction with the 
parameters 21=0.01,  24=0.1,  25=0.17.  The three roots are located at: ( 1 ) x i = x 3 = 0 . 0 1 1  , 
x 2 -  8.55; (2) x I =x3  =0.274, x2 =0.75;  (3) x 1 = x 3 - 0 . 6 3 7 ,  x2 =0.37. 

By summarizing the results obtained so far, we expect that spatiotem- 
poral modulation of the light intensity may give rise to the following effects. 
Depending on the local value of the parameter 25(r, t), the local state 
corresponds to one of the following regimes: 

1. One stable state of the reduced phase exists; traveling waves which 
increase the volume (area) of the stable phase are formed. 

2. The oxidized as well as the reduced phase are stable. Front waves 
are developed which locally increase the volume (area) of the more 
stable phase. 

3. The oxidized phase is stable; traveling waves increasing this phase 
are observed. 

4. The only existing stationary state is unstable; uniform oscillations 
and/or traveling oscillating waves are formed. 

By changing the light intensity as a given function of time and space, 
very complicated patterns may be created. This has been demonstrated 
recently in the beautiful experiments by Kuhnert. (6) The model given in this 
paper cannot claim to describe the experiments quantitatively; however, it 
gives at least a qualitative picture of some observed phenomena. 
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4. DBSCUSSION 

In the present paper two different examples of pattern processing by 
RDS have been discussed. The first example shows the evolution of the 
density in a one-component autocatalytic RDS with a complicated local 
structure of the reaction rates. We have shown that the system finds local 
extrema of the reaction rates in a very efficient way. Simulations of such a 
"Darwinian" search strategy on a computer are a possible alternative 
method for the solution of certain optimization problems. It may be expec- 
ted that the RDS method is advantageous in comparison with ther- 
modynamic methods if the "good" minima are relatively close to one 
another but are separated by high thresholds. In such cases the RDS tun- 
neling processes may be more efficient than the thermodynamic activation 
processes. 

In the second example, a three-component RDS is analyzed, which 
generalizes the Oregonator model by adding a source of Br ions. In 
Kuhnert 's Ru-catalyzed variant of the BZR the Br source is controlled 
through illumination by light. The theoretical analysis shows that 
impinging patterns may produce very complicated phenomena, such as 
forward- or backward-moving front waves, oscillating waves, etc. The RDS 
gives a specific dynamic response to input patterns. Recent work of Kirby 
and Conrad (z4) suggests the use of this response for pattern recognition 
and related problems. In analogy to their enzymatic neuron, we may 
introduce in our RDS a system of n electrodes which measure and trans- 
form the local chemical state at the positions rl ,  r2,..., r~ (see Fig. 2). Let us 

Fig. 2. Schema of the light-sensitive RDS manipulated by illumination inside the area of the 
"K." The positions of the output  electrodes that measure the local ion concentrations are 
marked by crosses. 
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assume that the electrodes act as nonlinear mappings of the local chemical 
state onto an f-dimensional space of electrical signals. The output vectors 
are then given by a mapping 

y ( t )  = M [ x ( r  I t),..., x(r , ,  t)] (20) 

The fast motion in the continuous space of concentrations is then mapped 
to a fast motion in a f-dimensional vector space with a specific topological 
structure, depending on the input patterns and the localization of the elec- 
trodes. Impinging patterns are compressed finally on the attractors in the 
vector space of the electrical signals. This procedure leads to a special con- 
traction mechanism whereby many input patterns are mapped into the 
same output. Similar schemas have been discussed in many context (2'11) 
and their possible relevance for pattern recognition shown. (4'1~ Of basic 
importance for such applications seems to be the introduction of an adap- 
tive behavior by the coupling to a slow dynamics. (4) In our chemical system 
an adaptive behavior is most easily introduced by slow adaptive changes of 
the electrode positions (Fig. 2). Requiring that different input patterns (e.g., 
different letters) should correspond to different attractors in the vector 
space of electrical signals, an optimizations of the positions seems to be 
possible. However, it should be underlined that such systems are still too 
complex for a straightforward theoretical analysis. Further experimental 
and theoretical work will be necessary in order to explore the capabilities 
of RDS for pattern recognition. To begin with, we mention the need for a 
full bifurcation analysis. (2~ 
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